

Learning Canonical Representations for Scene Graph to Image Generation

Roei Herzig **TAU**

Amir Bar TAU

Huijuan Xu Berkelev

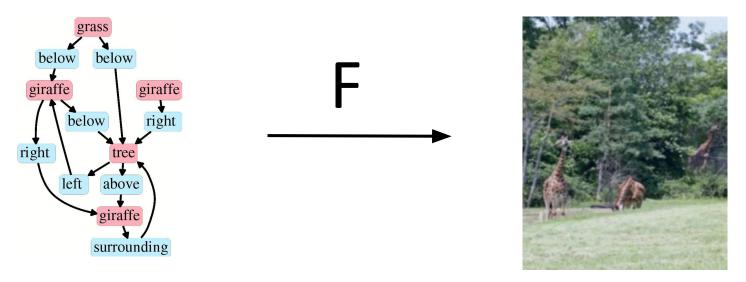
Gal Chechik Bar-Ilan/Nvidia

Berkeley

Trevor Darrell Amir Globerson TAU

Image Generation from Scene Graphs (SGs)

Goal: learn a function **F** for SG-to-image



Input - scene graph

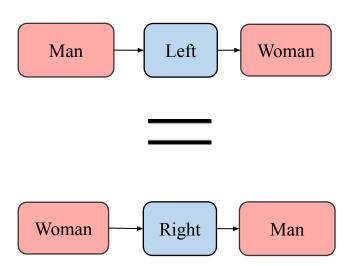
Output - generated image

Task proposed in: Image Generation from Scene Graphs, Johnson et al., CVPR 2018.

Limitation of Current Models

Equivalent inputs lead to different predictions

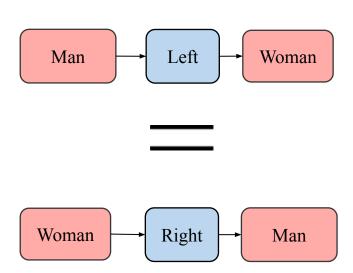
Semantically equivalent



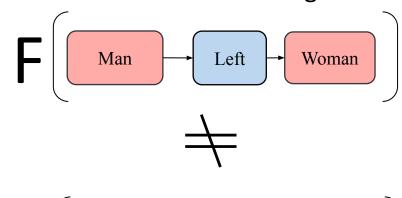
Limitation of Current Models

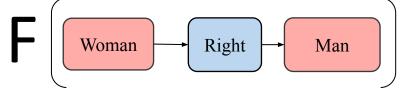
Equivalent inputs lead to different predictions

Semantically equivalent



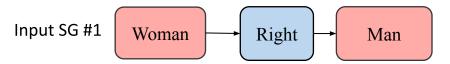
Two **different** images

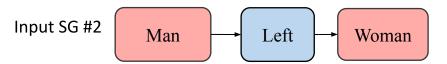




Contributions

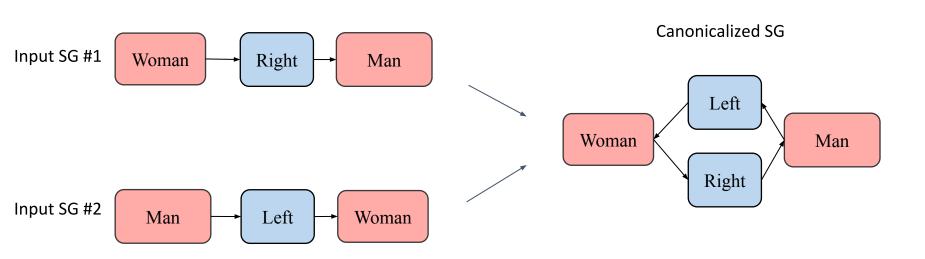
Our model learns a canonical graph representation from the data that obtains stronger invariance properties





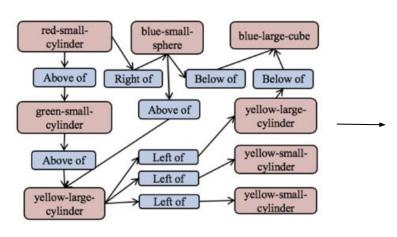
Contributions

Our model learns a canonical graph representation from the data that obtains stronger invariance properties



Contributions

This leads to improved performance on large SGs, robustness to noise in the input SG, and better generalization.

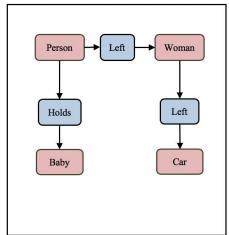


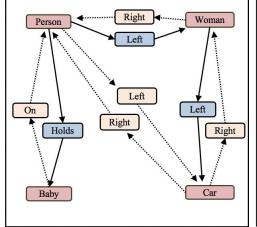
Input Scene Graph (partial)

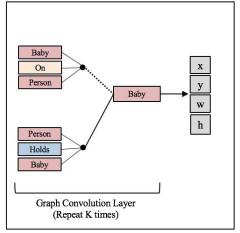
Predicted Image (sg2im)

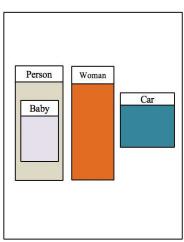
Predicted Image (ours)

High Level Architecture









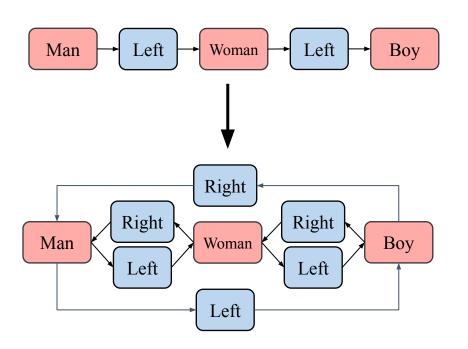
Input Scene Graph

Scene Graph Canonicalization

GCN

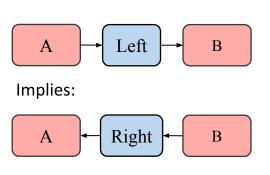
Scene Layout

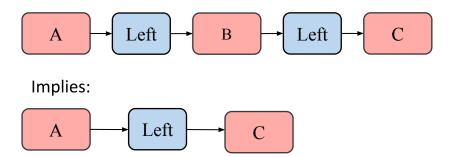
What should be the canonical form of an input scene graph?



A natural choice is the "relation-closure", the graph containing all the possible implied edges.

We deal with two types of completion rules. Converse completion and transitive completions.

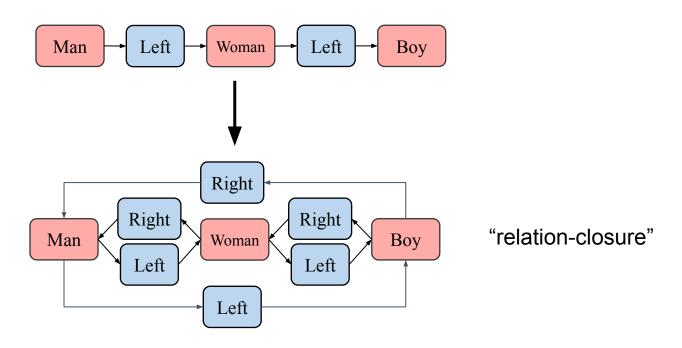


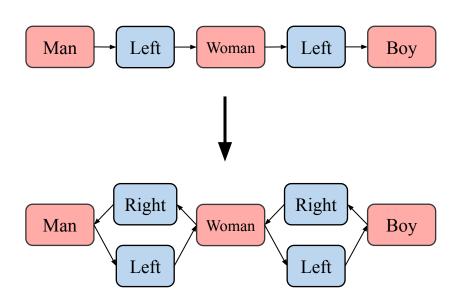


Converse Relations

Transitive Relations

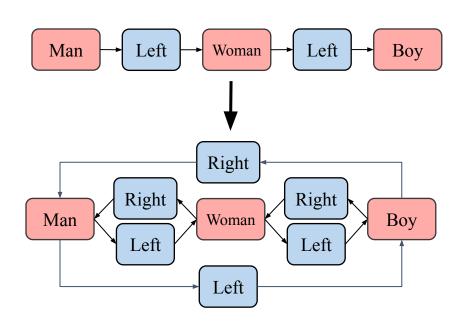
Goal: given an input scene graph, compute its relation-closure





Step 1: converse completions

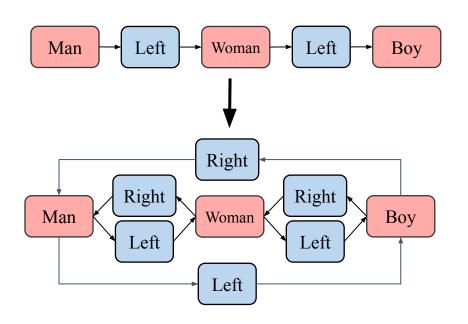
For every edge, we complete its converse edges.



Step 1: converse completions

Step 2: transitive completions

For every transitive relation, we construct missing transitive edges



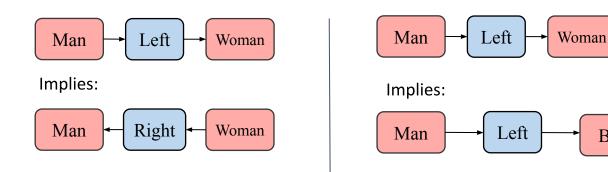
Step 1: converse completions

Step 2: transitive completions

This procedure produces the *relations-closure*.

An assumption of the SGC is that **converse and transitive completion rules are known**.

We next show how to learn this from data.



Converse Rules

Transitive Rules

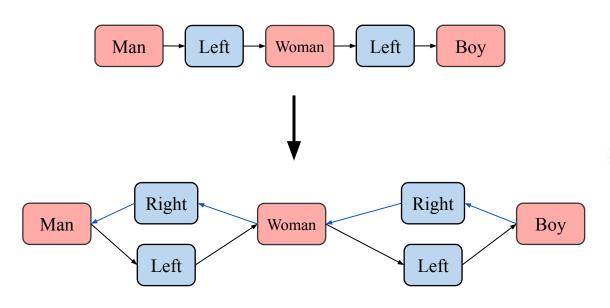
Left

Boy

Boy

Weighted Scene Graph Canonicalization

Step 1: converse completions



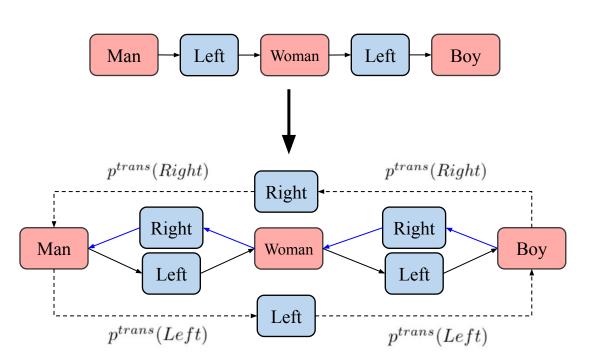
For every relation pair r we can learn the probability that r' is converse to it.

$$p^{conv}(r'|r) = \frac{e^{\theta_{r,r'}^{conv}}}{\sum_{\hat{r} \in \mathcal{R} \cup \phi} e^{\theta_{r,\hat{r}}^{conv}}}$$

To complete edges, for every edge, we sample from its corresponding converse distribution.

Weighted Scene Graph Canonicalization

Step 2: transitive completions

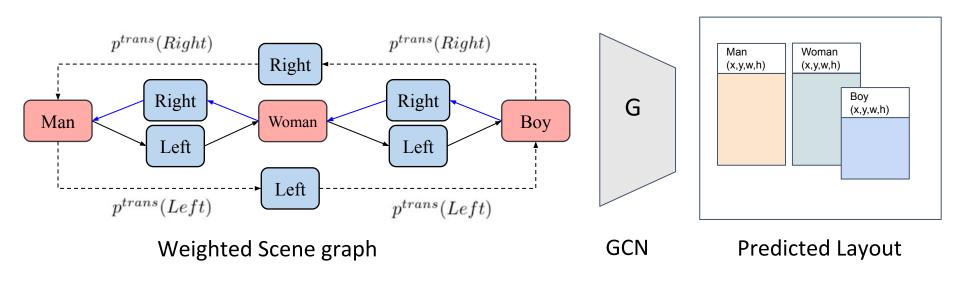


For every relation *r*, we learn the probability that it is transitive.

$$p^{trans}(r) = \sigma(\theta_r^{trans})$$

We complete transitive edges and assign them this probability

GCN for Weighted Scene Graph

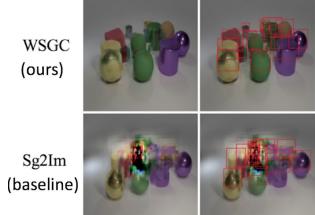


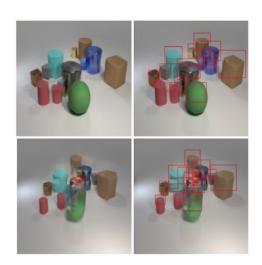
Generation Results

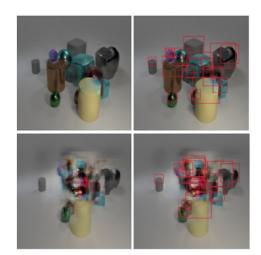
^{*} Only scene graph to layout component is compared. **Layout to image component is fixed** to LostGANs: Sun, W., & Wu, T. (2019). Image synthesis from reconfigurable layout and style. *ICCV 2019*

Large Graph Sizes

Improved performance over packed scenes







Example #1 Example #2 Example #3

Large Graph Sizes

Improved performance over packed scenes

	Standard						Packed					
Method	mIOU		R@0.3 R@0			.5	mIOU R@0.3 R@0.5).5	
	COCO	VG	COCO	VG	COCO	VG	COCO	VG	COCO	VG	COCO	VG
Sg2Im [17] 5 GCN^9	-	-	52.4	21.9	32.2	10.6	-	-	-	-	-	-
Sg2Im [17] 5 GCN^{10}	41.7	16.9	62.6	24.7	37.5	9.7	35.8	25.4	56.0	36.2	25.3	15.8
$Sg2Im [17] 8 GCN^{10}$	41.5	18.3	62.9	26.2	38.1	10.6	37.2	25.8	58.6	36.9	26.4	15.9
Sg2Im [17] 16 GCN^{10}	40.8	16.4	61.4	23.3	36.6	7.8	37.7	27.1	60.3	39.0	26.6	17.0
WSGC 5 GCN (ours)	41.9	18.0	63.3	25.9	38.2	10.6	39.3	28.5	62.6	42.4	30.1	18.3

Thank you!

Project page: https://roeiherz.github.io/CanonicalSg2lm/

Poster #5328